
Directive Language Specification

Center for Climate System Modeling (C2SM)
http://www.c2sm.ethz.ch

Valentin Clement

Last updated: December 3, 2018

v2.0

Contents

1 General information about the CLAW language 4

1.1 Line continuation . 4

1.2 Interpretation order of the CLAW directives . 4

1.3 Accelerator compile guard . 5

2 CLAW high-level directives 6

2.1 Single Column Abstraction (SCA) . 6

2.1.1 SCA directive in ELEMENTAL function . 11

1

2.1.2 Automatic Data Movement Managment . 11

2.1.3 SCA model configuration . 11

3 CLAW low-level directives 13

3.1 Global clauses . 13

3.1.1 Target clause . 14

3.2 Loop transformation . 14

3.2.1 Loop interchange/reordering . 14

3.2.2 Loop jamming/fusion . 15

3.2.3 Loop extraction . 16

3.2.4 Loop hoisting . 18

3.2.5 Conditional extraction from loop . 20

3.2.6 Loop fission/splitting . 21

3.3 Specific transformation . 22

3.3.1 K caching (column caching) . 22

3.3.2 On-the-fly computation (array access to function call) 24

3.4 Accelerator abstraction/helper transformation . 24

3.4.1 Conditional primitive directives . 24

3.4.2 Vector notation expansion . 25

3.5 Utility transformation . 27

3.5.1 Remove . 27

3.5.2 Ignore . 28

3.5.3 Verbatim . 29

A Code examples 30

A.1 kcache 2 . 30

2

A.2 kcache 3 . 30

A.3 loop-interchange 2 . 31

A.4 loop-interchange 3 . 31

A.5 loop-fusion 2 . 32

A.6 loop-fusion 3 . 33

A.7 loop-fusion 4 . 34

A.8 loop-extract 2 . 34

A.9 loop-extract 3 . 35

A.10 array-transform 2 . 36

A.11 array-transform 3 . 37

A.12 array-transform 4 . 38

A.13 remove 2 . 39

Conventions used in this document

Keywords and punctuation that are part of the actual specification will appear in typewriter font:

!$claw

Italic font is used where a keyword or other name must be used:

!$claw directive-name

Optional syntax is enclosed in square brackets; an option that may be repeated more than once is
followed by ellipses:

!$claw directive-name [clause [[,] clause]. . .]

3

1 General information about the CLAW language

The directives are either local or global.

• Local directive: those directives have a limited impact on a local block of code (for example,
only in a subroutine or only in a do statement block)

• Global directive: those directives can have an impact on the whole translation unit.

The CLAW transformations are separated in two sections:

• CLAW high-level abstraction transformations: perform transformations on abstraction based
on domain science.

• CLAW low-level directive transformations: perform basic transformations based on the code
structure.

Loop transformation

Specific transformation

Accelerator abstraction/helper transformation

Utility transformation

1.1 Line continuation

CLAW directives can be defined on several lines using the continuation line symbol. The syntax is
described as follows:

1 !$claw directive clause &
2 !$claw clause

1.2 Interpretation order of the CLAW directives

The CLAW transformations can be combined together. For example, loop-fusion and loop-

interchange can be used together in a group of nested loops.

The default application order of the transformations is defined as follows:

1. ignore

2. remove

3. primitive

4

4. array-transform

5. loop-extract

6. loop-hoist

7. loop-fusion

8. loop-interchange

9. on-the-fly

10. kcache

11. if extract

12. parallelize

13. parallelize forward

14. formatting transformation (internal use transformation)

Users must be aware that transformations are applied sequentially and therefore, a transformation
can be performed on code that has already been transformed.

1.3 Accelerator compile guard

As CLAW generates accelerator directives, it might be useful sometimes to protect the compilation
of source code including accelerator directives as it might be wrong if the CLAW FORTRAN
Compiler didn’t process it.

For this reason, the CLAW language has a compile guard that is removed by the CLAW FORTRAN
Compiler while it applies the other transformations. This compile guard is designed to make the
compilation failed when transformations are not applied and accelerator directives are present in
the source code.

The compile guard is shown in the listing below. It uses the target accelerator language with a
specific claw directive. Example for OpenACC on line 2 and OpenMP on line 3.

1 !$<accelerator language prefix> claw-guard
2 !$acc claw-guard
3 !$omp claw-guard

This line is then removed once the transformations are applied.

5

2 CLAW high-level directives

2.1 Single Column Abstraction (SCA)

The sca directive is used to parallelize a single column based algorithm. In weather prediction
models, the physical parametrizations are column independent problems. This means that the
algorithm to compute the different output fields, can be defined with as a single do statement
iterating over the vertical dimension and there is no horizontal dependency. The sca directive is
then used to parallelize efficiently this column algorithm over the domain (horizontal dimensions).
The directive is local to a subroutine. Therefore, as a pre-condition, the column algorithm must be
enclosed in a module subroutine.

1 !$claw define dimension dim_id(lower_bound:upper_bound) &
2 [!$claw define dimension dim_id(lower_bound:upper_bound) &] ...
3 !$claw sca [data(var_1[,var_2] ...)] [over (dim_id|:[,dim_id|:] ...)]

Options and details

• define dimension: Define a new dimension on which the column model will be parallelized.
The lower bound and upper bound of the defined dimension can be either an integer constant
or an integer variable. If a variable is given, it will be added in-order to the signature of the
subroutine as an INTENT(IN) parameter.

• data (optional): Define a list of variables to be promoted and bypass the automatic promotion
deduction.

• over (optional): Define the location of the new dimensions in promoted variables. The :

symbol reflects the position of the current dimensions before the promotion.

If the data clause is omitted, the automatic promotion of variables is done as follows:

• Array variables declared with the INOUT or OUT intents are automatically promoted with the
defined dimensions. In function of the target, intermediate scalar or array variables may also
be promoted.

• Scalar/array variables placed on the left hand-side of an assignment statement will be pro-
moted if the right hand-side references any variables already promoted. If the over clause is
omitted, the dimensions are added on the left-side following the the definition order if there
is multiple new dimensions. The over clause allows to change this behavior and to place the
new dimensions where needed.

As the subroutine/function signature is updated by the sca directive with new dimensions, the call
graph that leads to this subroutine/function must be updated as well. For this purpose, the clause
forward allows to replicated the changes along the call graph. Each subroutine/function along the
call graph must be decorated with this directive.

6

1 ! Call of a sca subroutine
2 !$claw sca forward
3 CALL one_column_fct(x,y,z)
4
5 ! Call of a sca function
6 !$claw sca forward
7 result = one_column_fct(x,y,z)

The different variables declared in the current function/subroutine might be promoted if the call
requires it. In this case, the array references in the function/subroutine are updated accordingly.
This can lead to extra promotion of local scalar variables or arrays when needed.

The root function call in the call graph might be an iteration over several column to reproduce the
algorithm on the grid for testing purpose. If the directive with the forward clause is placed just
before one or several nested do statements with a function call, the corresponding do statements
will be removed and the function call updated accordingly.

1 !$claw sca forward
2 DO i=istart, iend
3 CALL one_columne_fct(x,y(i,:),z(i,:))
4 END DO

The root function call can also introduce blocking. For this, the blocked clause must be added to
the directive. The blocked clause takes an argument that can be a positive integer or an INTEGER

variable.

1 !$claw parallelize forward blocked(bsize)
2 DO p = 1, nproma
3 CALL compute_column(nz, q(p,:), t(p,:), z(p,:))
4 END DO

The transformed code will automatically compute block sizes and split the horizontal dimension
accordingly.

1 p_blocks = <number of blocks as a function of "bsize">
2 DO p_i = 1, p_blocks
3 p0 = <first index of block in global array>
4 p1 = <final index of block in global array>
5 CALL compute_column (nz , q (p0:p1 , :) , t (p0:p1, :) , z (p0:p1, :), &
6 nproma=p1-p0)
7 END DO

Computation of the number of blocks is given by the implementation. User can also provide a
function to perform this computation. This function must takes an INTEGER argument and return
an INTEGER value.

To provide this function, the user can use the block-fct(<function-name>) clause.

7

Code example
Simple example of a column model wrapped into a subroutine and parallelized with CLAW.

Original code

1 PROGRAM model
2 USE mo_column, ONLY: compute_column
3
4 REAL, DIMENSION(20,60) :: q, t ! Fields as declared in the whole model
5 INTEGER :: nproma, nz ! Size of array fields
6 INTEGER :: p ! Loop index
7
8 nproma = 20
9 nz = 60

10
11 DO p = 1, nproma
12 q(p,1) = 0.0
13 t(p,1) = 0.0
14 END DO
15
16 ! Root call to the parallelized subroutine will be transformed as well.

Arrays
17 ! q and t will be passed entierly and the do statement will be removed.
18
19 !$claw sca forward
20 DO p = 1, nproma
21 CALL compute_column(nz, q(p,:), t(p,:))
22 END DO
23
24 PRINT*,SUM(q)
25 PRINT*,SUM(t)
26 END PROGRAM model

1 MODULE mo_column
2 IMPLICIT NONE
3 CONTAINS
4 ! Compute only one column
5 SUBROUTINE compute_column(nz, q, t)
6 IMPLICIT NONE
7
8 INTEGER, INTENT(IN) :: nz ! Size of the array field
9 REAL, INTENT(INOUT) :: t(:) ! Field declared as one column only

10 REAL, INTENT(INOUT) :: q(:) ! Field declared as one column only
11 INTEGER :: k ! Loop index
12 REAL :: c ! Coefficient
13 REAL :: d ! Intermediate variable
14
15 ! CLAW definition
16 ! Define the new dimension on which the transformation parallelize the
17 ! single column abstraction. In this case, the automatic promotion

8

18 ! deduction will be activated as the data/over clauses are not present.
19
20 !$claw define dimension proma(1:nproma) &
21 !$claw sca
22
23 c = 5.345
24 DO k = 2, nz
25 t(k) = c * k
26 d = t(k)**2
27 q(k) = q(k - 1) + t(k) * c
28 END DO
29 q(nz) = q(nz) * c
30 END SUBROUTINE compute_column
31 END MODULE mo_column

Transformed code
Only the code of the module is shown as it is the only one which changes.

CLAW generated code for GPU target with OpenACC accelerator directive language.

1 MODULE mo_column
2
3 CONTAINS
4 SUBROUTINE compute_column (nz , q , t , nproma)
5 INTEGER , INTENT(IN) :: nz
6 REAL , INTENT(INOUT) :: t (: , :)
7 REAL , INTENT(INOUT) :: q (: , :)
8 INTEGER :: k
9 REAL :: c

10 REAL :: d
11
12 INTEGER , INTENT(IN) :: nproma
13 INTEGER :: proma
14
15
16 !$acc data present(q,nproma,nz,t)
17 !$acc parallel private(k,proma,d,c)
18 !$acc loop
19 DO proma = 1 , nproma , 1
20 c = 5.345
21 !$acc loop seq
22 DO k = 2 , nz , 1
23 t (proma , k) = c * k
24 d = t (proma , k) ** (2)
25 q (proma , k) = q (proma , k - 1) + t (proma , k) * c
26 END DO
27 q (proma , nz) = q (proma , nz) * c
28 END DO
29 !$acc end parallel

9

30 !$acc end data
31 END SUBROUTINE compute_column
32
33 END MODULE mo_column

CLAW generated code for CPU target with OpenMP accelerator directive language.

1 MODULE mo_column
2
3 CONTAINS
4 SUBROUTINE compute_column (nz , q , t , nproma)
5 INTEGER , INTENT(IN) :: nz
6 REAL , INTENT(INOUT) :: t (: , :)
7 REAL , INTENT(INOUT) :: q (: , :)
8 INTEGER :: k
9 REAL :: c

10 REAL :: d (1 : nproma)
11
12 INTEGER , INTENT(IN) :: nproma
13 INTEGER :: proma
14
15
16 !$omp parallel
17 c = 5.345
18 DO k = 2 , nz , 1
19 !$omp do
20 DO proma = 1 , nproma , 1
21 t (proma , k) = c * k
22 END DO
23 !$omp end do
24 !$omp do
25 DO proma = 1 , nproma , 1
26 d (proma) = t (proma , k) ** (2)
27 END DO
28 !$omp end do
29 !$omp do
30 DO proma = 1 , nproma , 1
31 q (proma , k) = q (proma , k - 1) + t (proma , k) * c
32 END DO
33 !$omp end do
34 END DO
35 !$omp do
36 DO proma = 1 , nproma , 1
37 q (proma , nz) = q (proma , nz) * c
38 END DO
39 !$omp end do
40 !$omp end parallel
41 END SUBROUTINE compute_column
42
43 END MODULE mo_column

10

Compilation with the CLAW FORTRAN Compiler

1 # For GPU target with OpenACC directive
2 clawfc --target=gpu --directive=openacc -o mo_column.gpu_acc.f90 mo_column.f90
3 clawfc --target=gpu --directove=openacc -o main.claw.f90 main.f90
4
5 # For CPU target without directive
6 clawfc -t=cpu -d=none -o mo_column.cpu_omp.f90 mo_column.f90
7 clawfc -t=cpu -d=none -o main.claw.f90 main.f90

2.1.1 SCA directive in ELEMENTAL function

Single Column Abstraction can be used within an ELEMENTAL function or subroutine. Depending
on the desired target, the function/subroutine can be transformed to fit the programming paradigm.
Once transformed, the function/subroutine is not garuanteed to be PURE or ELEMENTAL any-
more.

2.1.2 Automatic Data Movement Managment

Some targets need to take care of data movement between an host and a device. This data movment
can be handled by CLAW using the followings clauses on !$claw sca forward directive.

• create: the create clause will generate the appropriate data allocation/deallocation before
and after the sca forward directive.

• update[(in|out)]: the update clause will generate the appropriate update before and/or
after the sca forward directive. The update clause accepts in or out optional options.

This clauses have no effect when the transformation target does not need a data movement man-
agement.

2.1.3 SCA model configuration

Instead of defining dimension per subroutine or function, one can define them for the whole model.
These definitions have to be done in a specific configuration file as detailled in this section. The
promotion of variables are based on defined layout also specified in the same configuration file.

When using a model configuration file, the is simplified to the minimum required as shown below:

1 !$claw sca [layout(layout_id)]

11

In addition to the sca directive, a new directive is used to specify which variables are ”model data”.
Model data are variables that will be promoted during the transformation. The model-data direc-
tive is a block directive and has to be placed in the declaration section of the subroutine/function.
One or more model-data block can be declared in a subroutine/function.

1 !$claw model-data
2
3 ! Variable declaration
4
5 !$claw end model-data

The specification of the model configuration file are listed below:

• The model configuration file follows the TOML file format.

• The configuration is spearated in three tables: model, dimensions, layouts.

Model table
The model table contains all global information about the model and its configuration.

Dimensions table
The dimensions table contains all dimension definitions. Each definition can have the information
listed here:

• id : the identifier of the dimension definition. It is unique in the model configuration.

• size: the size of the dimension as a lower and upper bound. The lower bound can be omitted
and the default value 1 will be assigned. Upper bound is mandatory.

• iteration: iteration information of the dimension defined with a lower and upper bound as
well as a step. All information are optional. If omitted, lower and upper bound are copied
from size information and the default value 1 is assigned to the step.

Layouts table
The layout table contains all the different layout that can be applied for a specific target or a specific
subroutine/function.

• name: the identifier of the layout definition. It is unique in the model configuration. default
is the only mandatory layout definiton.

• position: list of dimension definition that defined the layout. The semi-colon (:) define already
existing definition.

Listing 1: Example of SCA model configuration file.

1 # ModelX SCA configuration file

12

2 # This file is an example to show the different posibility in the configuration
3 # file
4
5 [model] # Definition of global model information
6 name = "ModelX"
7
8 [[dimensions]] # Definition of dimensions that can be used in layouts
9 id = "horizontal"

10 [dimensions.size]
11 lower = 1 # if not specified, 1 by default
12 upper = "nproma" # mandatory information
13 [dimension.iteration]
14 lower = "pstart" # if not specified size.lower by default
15 upper = "pend" # if not specified size.upper by default
16 step = 1 # if not specified, 1 by default
17
18 [[dimensions]] # Add a new dimension in the hashtable
19 id = "vertical"
20 [dimensions.size]
21 upper = "klev"
22
23 [[layouts]] # Definition of layouts and default layout for specific target
24 id = "default" # mandatory layout, used if no specific target layout
25 # specified
26 position = ["horizontal", ":"]
27
28 [[layouts]] # Add a new layout in the hashtable
29 id = "cpu" # Target specific layout for CPU
30 position = [":" , "horizontal"]
31
32 [[layouts]] # Add a new layout in the hashtable
33 id = "gpu" # Target specific layout for GPU
34 position = ["horizontal", ":"]
35
36 [[layouts]] # Add a new layout in the hashtable
37 id = "radiation" # Specialized layout, can be mentioned in the sca
38 # clause
39 position = [":" , "horizontal"]

3 CLAW low-level directives

3.1 Global clauses

The following clauses can be applied to any kind of low-level transformations.

13

3.1.1 Target clause

The target clause specify for which transformed target the transformation is active. If no target is
specified, the transformation is active for all targets. Current target are cpu,gpu,none.

1 !$claw directive [target(specific_target)]

The specific_target is one of the value provided by the compiler.

3.2 Loop transformation

3.2.1 Loop interchange/reordering

1 !$claw loop-interchange [(induction_var[, induction_var] ...)]

Loop reordering is a common transformation applied on do statements when adding parallelization.
This transformation is mainly used to improve the data locality and avoid the need to transpose
arrays.

The loop-interchange directive must be placed just before the first do statement composing the
nested do statements group. With a group of two nested do statements, the induction variable and
iteration range of the first statement is swapped with the information of the second do statement
(see example 3.2.1).

If the list of induction variables is specified, the do statements are reordered according to the order
defined in the list (see example A.3).

Options and details

1. induction var : induction variable of the do statement. The list gives the new order of the do
statement after the transformation. For group of 2 nested do statements, this information is
not necessary, as the new order is deducted.

Behavior with other directives
When the do statements to be reordered are decorated with additional directives, those directives
stay in place during the code transformation. In other words, they are not reordered together with
the do statements iteration ranges (see example A.4).

Limitations
Currently, the loop-interchange directive is limited to 3 level of nested do statements. More
nested levels can be declared but the transformation is limited to the first 3 levels from the directive
declaration.

Code example
Example with 2 levels of loop.

14

Original code

1 !$claw loop-interchange
2 DO i=1, iend
3 DO k=1, kend
4 ! loop body here
5 END DO
6 END DO

Transformed code

1 ! CLAW transformation (loop-interchange i < -- > k)
2 DO k=1, kend
3 DO i=1, iend
4 ! loop body here
5 END DO
6 END DO

More code examples in the appendix. Example with 3 nested do statements (see example A.3).
Example with others directives (see example A.4).

3.2.2 Loop jamming/fusion

1 !$claw loop-fusion [group(group_id)] [collapse(n)]

Loop jamming or fusion is used to merge 2 or more do statements together. Sometimes, the work
performed in a single do statement is too small to create significant impact on performance when it is
parallelized. Merging some do statements together create bigger blocks (kernels) to be parallelized.

If the group clause is not specified, all the do statements decorated with the directive in the same
structured block and at the same depth in the AST will be merged together as a single do statement
(see code example in this section).

If the group clause is specified, the loops are merged in-order with do statements sharing the same
group in the current structured block (see example A.5).

The collapse clause is used to specify how many tightly nested do statements are associated with the
loop-fusion construct (see example A.7). The argument to the collapse clause is a constant positive
integer. If the collapse clause is not specified, only the do statement that follows immediately the
directive is associated with the loop-fusion construct.

Options and details

• group id : An identifier that represents a group of do statement in a structured block (see
example A.5).

15

• n: A constant positive integer.

Behavior with other directives
When the do statement to be merged are decorated with other directives, only the directives on
the first do statement of the merge group are kept in the transformed code.

Limitations
All the do statement within a group must share the same iteration range. If the collapse clause is
specified, the do statements must share the same iteration range at the corresponding depth (see
example A.7).

Code example
Example without clauses.

Original code

1 DO k=1, iend
2 !$claw loop-fusion
3 DO i=1, iend
4 ! loop #1 body here
5 END DO
6
7 !$claw loop-fusion
8 DO i=1, iend
9 ! loop #2 body here

10 END DO
11 END DO

Transformed code

1 DO k=1, iend
2 ! CLAW transformation (loop-fusion same block group)
3 DO i=1, iend
4 ! loop #1 body here
5 ! loop #2 body here
6 END DO
7 END DO

More code examples in the appendix. Example with the group clause (see example A.5). Example
with others directives (see example A.6). Example with the collapse clause (see example A.7).

3.2.3 Loop extraction

1 !$claw loop-extract range(range_info) [[map(var[,var]...:mapping[,mapping]...)
[map(var[,var]...:mapping[,mapping]...)] ...] [fusion [group(group_id)]] [
parallel] [acc(directives)]

16

Loop extraction can be performed on a subroutine/function call. The do statement corresponding
to the defined iteration range is extracted from the subroutine/function and is wrapped around the
subroutine/function call. In the transformation, a copy of the subroutine/function is created with
the corresponding transformation (demotion) for the parameters.

Options and details

1. range: Correspond to the induction variable of the do statement to be extracted. Notation i.

2. map: Define the mapping of variable that are demoted during the loop extraction. As seen
in the example 3.2.3, the two parameters (1 dimensional array) are mapped to a scalar with
the induction variable i.

(a) The var can be defined as two parts variable (e.g. a/a1). The first part is the function
call part and refers to the variable as it is defined in the function call. The second part
is the function definition part and refers to the name of the variable to be mapped as it
defined in the function declaration. If a var is defined as a single part variable, the same
name is used for both the function call and function definition part.

(b) The mapping can be defined as two parts variable (e.g. i/i1). The first part is the
function call part and refers to the mapping variable as it is defined in the function call.
The second part is the function definition part and refers to the name of the mapping
variable as it defined in the function declaration. If a mapping is defined as a single
part mapping variable, the same name is used for both the function call and function
definition part.

3. fusion: Allow the extracted loop to be merged with other loops. Options are identical with
the loop-fusion directive.

4. parallel : Wrap the extracted loop in a parallel region.

5. acc: Add the accelerator directives to the extracted loop.

If the directive loop-extract is used for more than one call to the same subroutine, the extraction
can generate 1 to N dedicated subroutines.

Behavior with other directives
Accelerator directives are generated by the transformation. If the function call was decorated with
accelerator directives prior to the transformation, those directives stay in place.

Limitations
The do statement to be extracted must be fully embraced in the subroutine/function. This means
that no statements must be oustide of the do statement.

Code example
Example without additional clauses.

Original code

17

1 PROGRAM main
2 !$claw loop-extract range(i) map(value1,value2:i)
3 CALL xyz(value1, value2)
4 END PROGRAM main
5
6 SUBROUTINE xyz(value1, value2)
7 REAL, INTENT (IN) :: value2(x:y), value2(x:y)
8
9 DO i = istart, iend

10 ! some computation with value1(i) and value2(i) here
11 END DO
12 END SUBROUTINE xyz

Transformed code

1 PROGRAM main
2 !CLAW extracted loop
3 DO i = istart, iend
4 CALL xyz_claw(value1(i), value2(i))
5 END DO
6 END PROGRAM main
7
8 SUBROUTINE xyz(value1, value2)
9 REAL, INTENT (IN) :: value2(x:y), value2(x:y)

10
11 DO i = istart, iend
12 ! some computation with value1(i) and value2(i) here
13 END DO
14 END SUBROUTINE xyz
15
16 !CLAW extracted loop new subroutine
17 SUBROUTINE xyz_claw(value1, value2)
18 REAL, INTENT (IN) :: value1, value2
19 ! some computation with value1 and value2 here
20 END SUBROUTINE xyz_claw

More code examples in the appendix. Example with the fusion clause (see example A.8). Example
with a more complicated mapping (see example A.9).

3.2.4 Loop hoisting

1 !$claw loop-hoist(induction_var[[, induction_var] ...]) [reshape(array_name(
target_dimension[,kept_dimensions]))] [interchange [(induction_var[[,
induction_var] ...])]] [fusion [group(group_id)] [collapse(n)]] [cleanup[(
acc|omp)]]

2
3 ! structured block of code

18

4
5 !$claw end loop-hoist

The loop-hoist directive allow single or nested loops in a defined structured block to be merged
together and to hoist the beginning of those nested loop just after the directive declaration. Loops
with different lower-bound indexes can also be merged with the addition of an IF statement. This
feature works only when the lower-bound are integer constant.

Options and details

1. induction var : List of induction variables of the do statements to be hoisted.

2. interchange: Allow the group of hoisted loops to be reordered after the current transformation
has been performed. Options are identical with the loop-interchange directive.

3. reshape: Reshape arrays to scalar or to array with fewer dimensions. The original declaration
is replaced with the corresponding demoted declaration in the current block (function/mod-
ule).

4. cleanup: The cleanup clause will remove any OpenACC or OpenMP pragmas already present
in the hoit block. If OpenACC or OpenMP is not specified, both are removed.

(a) array name: Name of the array type to be reshaped.

(b) target dimension: Number of dimension after reshaping. 0 indicates that the type is
reshapped to a scalar.

(c) kept dimension: comma separated list of integer that indicates which dimensions are
kept when the array is not totally demoted to scalar. Dimension index starts at 1.

5. fusion: Allow the extracted loop to be merged with other loops after the current transforma-
tion has been performed. Options are identical with the loop-fusion directive.

Limitations
If do statements in the hoist group need the addition of a IF statement, the lower-bound must be
an integer constant.

Code example
Example without clauses.

Original code

1 !$acc parallel loop gang vector collapse(2)
2 DO jt=1,jtend
3 !$claw loop-hoist(j,i) interchange
4 IF (.TRUE.) CYCLE
5 ! outside loop statement
6 END IF
7 DO j=1,jend

19

8 DO i=1,iend
9 ! first nested loop body

10 END DO
11 END DO
12 DO j=2,jend
13 DO i=1,iend
14 ! second nested loop body
15 END DO
16 END DO
17 !$claw end loop-hoist
18 END DO
19 !$acc end parallel

Transformed code

1 !$acc parallel loop gang vector collapse(2)
2 DO jt=1,jtend
3 DO i=1,iend
4 DO j=1,jend
5 IF (.TRUE.) CYCLE
6 ! outside loop statement
7 END IF
8 ! first nested loop body
9 IF(j>1) THEN

10 ! second nested loop body
11 END IF
12 END DO
13 END DO
14 END DO
15 !$acc end parallel

3.2.5 Conditional extraction from loop

1 !$claw if-extract

Conditional extraction from loop allows to extract a perfectly nested if statement from a do state-
ment.

Options and details
None.

Behavior with other directives
None.

Limitations
If the condition uses the induction variable, the transformation cannot be performed.

20

Code example
Example without clauses.

Original code

1 !$claw if-extract
2 DO i = 1, 10
3 IF (test) THEN
4 PRINT *, ’Then body:’, i
5 ELSE
6 PRINT *, ’Else Body’, i
7 END IF
8 END DO

Transformed code

1 IF (test) THEN
2 DO i = 1, 10
3 PRINT *, ’Then body:’, i
4 END DO
5 ELSE
6 DO i = 1, 10
7 PRINT *, ’Else Body’, i
8 END DO
9 END IF

3.2.6 Loop fission/splitting

1 !$claw loop-fission

Loop fission is used to split a do statement into multiple loops over the same iteration range with
each taking only a part of the original loop’s body. The goal is to break down a large loop body
into smaller ones to achieve better utilization of locality of reference or also reduce pressure on the
register usage.

Options and details None.

Behavior with other directives
None.

Code example

Original code

1 DO k = 1, kend
2

21

3 ! Part 1 of the loop body
4
5 !$claw loop-fission
6
7 ! Part 2 of the loop body
8
9 END DO

Transformed code

1 DO k = 1, kend
2
3 ! Part 1 of the loop body
4
5 END DO
6
7 DO k = 1, kend
8
9 ! Part 2 of the loop body

10
11 END DO

3.3 Specific transformation

3.3.1 K caching (column caching)

1 !$claw kcache data(var_1[,var_2] ...) [offset(offset_1[,offset_2] ...)]] [init]
[private]

In memory-bound problem, it might be useful to cache array values used several times during the
current do statement iteration or for the next one.

The kcache directive is applied in a limited do statement block. It will cache the corresponding
assigned value and update the array index in the block according to the given plus/minus offsets. If
the array referenced in the data clause is assigned in the block, the caching will take its place (see
example 3.3.1). Otherwise, an assignment statement is created to start the caching (see example
A.1).

If the offset values are omitted, there are inferred from the dimension of the variable to be cached
and set to 0.

Options and details

• data: The data clause specifies which array will be impacted by the column caching transfor-
mation. List of array identifiers.

22

• offset : Integer value separated by a comma that represents the offset at each dimension.

• init : If the init clause is specified, the cache variable will be initialized with the corresponding
array value at the given offset during the 1st loop iteration.

• private: it declares that a copy of each item on the list will be created for each parallel gang
on the accelerator. The list is the one specified on the data clause.

Code example
Where caching takes assignment place and init clause.

Original code

1 DO j1 = k1start, k1end
2 array_u6(j1,k3end) = pc1(j1,kend) * p2(j1)
3 ENDDO
4
5 DO j3 = k3start + 1, k3end
6 DO j1 = k1start, k1end
7 ! More computation here with others variables
8
9 value1 = 1.0_dp / (1.0_dp - p2(j1) * (pc2(j1,j3) * array6(j1,j3-1) &

10 + pc2(j1,j3) * array8(j1,j3-1)))
11 value2 = p2(j1) * (pc2(j1,j3) * array6(j1,j3-1) &
12 + pc2(j1,j3) * array8(j1,j3-1))
13 value6 = p1(j1) * (pc2(j1,j3) * array6(j1,j3-1) &
14 +pc2(j1,j3) * array8(j1,j3-1))
15 !$claw kcache data(array6) offset(0 -1) init
16 array6(j1,j3) = p2(j1) * pc1(j1,j3) &
17 + value2 * array8(j1,j3) + value6 * array8(j1,j3)
18 !$claw kcache data(array6, array8) offset(0 -1) init
19 array8(j1,j3) = p2(j1) * pc1(j1,j3) &
20 + value6 * array2(j1,j3) + value7 * array4(j1,j3)
21 END DO
22 END DO

Transformed code

1 DO j1 = k1start, k1end
2 array_u6(j1,k3end) = pc1(j1,kend) * p2(j1)
3 ENDDO
4
5 DO j1 = k1start, k1end
6 DO j3 = k3start + 1, k3end
7 IF (j3 = k3start + 1) THEN
8 array6_k_m1 = array6(j1,j3-1)
9 array8_k_m1 = array8(j1,j3-1)

10 END IF
11 ! More computation here with others variables
12

23

13 value1 = 1.0_dp / (1.0_dp - p2(j1) * (pc2(j1,j3) * array6_k_m1 &
14 + pc2(j1,j3) * array8_k_m1))
15 value2 = p2(j1) * (pc2(j1,j3) * array6_k_m1 &
16 + pc2(j1,j3) * array8_k_m1
17 value6 = p1(j1) * (pc2(j1,j3) * array6_k_m1 &
18 +pc2(j1,j3) * array8_k_m1
19 array6_k_m1 = p2(j1) * pc1(j1,j3) &
20 + value2 * array8(j1,j3) + value6 * array8(j1,j3)
21 array6(j1,j3) = array6_k_m1
22 array8_k_m1 = p2(j1) * pc1(j1,j3) &
23 + value6 * array2(j1,j3) + value7 * array4(j1,j3)
24 array8(j1,j3) = array8_k_m1
25 END DO
26 END DO

More code examples in the appendix. Example with assignment created during the transformation
(see example A.1). Example with init and private clause (see example A.2).

3.3.2 On-the-fly computation (array access to function call)

1 !$claw call array_name=function_call(arg_list)

Sometimes, replacing access to pre-computed arrays with computation on-the-fly can increase the
performance. It can reduce the memory access for memory-bound kernels and exploit some unused
resources to execute the computation.

This transformation is local to the current do statement. Array access from the directive will be
replaced.

Options and details

• array name: Array identifier. References to this array will be replaced by the function call in
the current structured block.

• function call : Name of the function provided by the user to compute the value. Return value
must be of the same type as accessed value.

• arg list : Comma separated list of arguments to be passed to the function call.

3.4 Accelerator abstraction/helper transformation

3.4.1 Conditional primitive directives

24

1 !$claw primitive_prefix primitive_directives
2
3 ! Example for OpenACC
4 !$claw acc routine seq
5
6 ! Example for OpenMP
7 !$claw omp target enter data

Primitive compiler directive like OpenACC or OpenMP can be enabled conditionally during the
transformation. Examples on line 4 and 7 are conditional directives. They will be transformed
into standard OpenACC respectively OpenMP directives only if the primitive directive language is
specified for the transformation.

3.4.2 Vector notation expansion

1 !$claw expand [induction(name [[,] name]...)] [fusion [group(group_id)]] [
parallel] [acc([clause [[,] clause]...])]

2
3 ! vector notation assignment(s)
4
5 [!$claw end expand]

Computations using the vector notation are not suitable to be parallelized with language like
OpenACC. The expand directive allows to transform those notation with the corresponding do
statements which are more suitable for parallelization.

The goal of this directive is to pass from an vector notation assignment like this:

1 !$claw expand
2 A(1:n) = A(1+m:n+m) + B(1:n) * C(n+1:n+n)

To a do statement statement like this:

1 DO i=1,n
2 A(i) = A(i+m) + B(i) * C(n+i)
3 END DO

If the directive is used as a block directive, the assignments are wrapped in a single do statement
if their induction range match.

1 !$claw expand
2 A(1:n) = A(1+m:n+m) + B(1:n) * C(n+1:n+n)
3 B(1:n) = B(1:n) * 0.5
4 !$claw end expand

25

To

1 DO i=1,n
2 A(i) = A(i+m) + B(i) * C(n+i)
3 B(i) = B(i) * 0.5
4 END DO

Options and details

1. induction: Allow to name the induction variable created for the do statement.

2. fusion: Allow the create do statement to be merged with other loops. Options are identical
with the loop-fusion directive

3. parallel : Wrap the extracted loop in a parallel region.

4. acc: Define accelerator clauses that will be applied to the generated loops.

Behavior with other directives
Directives declared before the expand directive will be kept in the generated code.

Code example
Example with vector notation following the pragma statement.

Original code

1 SUBROUTINE vector_add
2 INTEGER :: i = 10
3 INTEGER, DIMENSION(0:9) :: vec1
4
5 !$claw expand
6 vec1(0:i) = vec1(0:i) + 10;
7 END SUBROUTINE vector_add

Transformed code

1 SUBROUTINE vector_add
2 INTEGER :: claw_i
3 INTEGER :: i = 10
4 INTEGER, DIMENSION(0:9) :: vec1
5
6 ! CLAW transformation vector notation to do statement
7 DO claw_i = 0, i
8 vec1(claw_i) = vec1(claw_i) + 10;
9 END DO

10 END SUBROUTINE vector_add

More code examples in the appendix. Example with the induction and acc clauses (see example ??).
Example with fusion clause (see example ??). Example with 2-dimensional arrayx (see example
??).

26

3.5 Utility transformation

3.5.1 Remove

1 !$claw remove
2
3 ! code block
4
5 [!$claw end remove]

The remove directive allows the user to remove section of code during the transformation process.
This code section is lost in the transformed code.

Options and details
If the directive is directly followed by a structured block (IF or DO), the end directive is not
mandatory (see example 3.5.1). In any other cases, the end directive is mandatory.

Code example

Original code

1 DO k=1, kend
2 DO i=1, iend
3 ! loop #1 body here
4 END DO
5
6 !$claw remove
7 IF (k > 1) THEN
8 PRINT*, k
9 END IF

10
11 DO i=1, iend
12 ! loop #2 body here
13 END DO
14 END DO

Transformed code

1 DO k=1, kend
2 DO i=1, iend
3 ! loop #1 body here
4 END DO
5
6 DO i=1, iend
7 ! loop #2 body here
8 END DO
9 END DO

27

More code examples in the appendix. Example with block remove (see example A.13).

3.5.2 Ignore

1 !$claw ignore
2
3 ! code block
4
5 !$claw end ignore

The ignore directive allows the user to ignore section of code for the transformation process. This
code section is retrieved in the transformed code. Any CLAW directives in an ignored code section
is also ignored. This could be useful to workaround any compilers bug and/or problems.

Code example
In the example below, the first remove block is ignored and the second is not.

Original code

1 PROGRAM testignore
2
3 !$claw ignore
4 !$claw remove
5 PRINT*,’These lines’
6 PRINT*,’are ignored’
7 PRINT*,’by the CLAW compiler’
8 PRINT*,’but kept in the final transformed code’
9 PRINT*,’with the remove directives.’

10 !$claw end remove
11 !$claw end ignore
12
13 !$claw remove
14 PRINT*,’These lines’
15 PRINT*,’are not ignored.’
16 !$claw end remove
17
18 END PROGRAM testignore

Transformed code

1 PROGRAM testignore
2
3 !$claw remove
4 PRINT*,’These lines’
5 PRINT*,’are ignored’
6 PRINT*,’by the CLAW compiler’
7 PRINT*,’but kept in the final transformed code’
8 PRINT*,’with the remove directives.’

28

9 !$claw end remove
10
11 END PROGRAM testignore

3.5.3 Verbatim

1 !$claw verbatim IF (i > 5) THEN
2
3 ! code block
4
5 !$claw verbatim END IF

The verbatim directive allows the user to insert code after the transformation process. This code
is not analyzed by the compiler.

Code example
In the example below, the first remove block is ignored and the second is not.

Original code

1 PROGRAM testverbatim
2
3 !$claw verbatim IF (.FALSE.) THEN
4 PRINT*,’These lines’
5 PRINT*,’are not printed’
6 PRINT*,’if the the CLAW compiler has processed’
7 PRINT*,’the file.’
8 !$claw verbatim END IF
9

10 END PROGRAM testverbatim

Transformed code

1 PROGRAM testverbatim
2
3 IF (.FALSE.) THEN
4 PRINT*,’These lines’
5 PRINT*,’are not printed’
6 PRINT*,’if the the CLAW compiler has processed’
7 PRINT*,’the file.’
8 END IF
9

10 END PROGRAM testverbatim

29

A Code examples

A.1 kcache 2

Assignment is created during the transformation.

Original code

1 DO j3 = ki3sc+1, ki3ec
2 !$claw kcache data(array2)
3 var1 = x * y - array2(j1, j3)
4 var2 = z * array2(j1, j3)
5 END DO

Transformed code

1 DO j3 = ki3sc+1, ki3ec
2 array2_k = array2(j1,j3)
3 var1 = x * y - array2_k
4 var2 = z * array2_k
5 END DO

A.2 kcache 3

Using init and private clause

Original code

1 !$acc parallel
2 DO j3 = ki3sc+1, ki3ec
3 var3 = array1(j1,j3-1)
4
5 !$claw kcache data(array1) offset(0 -1) init private
6 array1(j1,ki3sc) = x * y * z
7 var1 = x * y - array1(j1, j3-1)
8 var2 = z * array1(j1, j3-1)
9 END DO

10 !$acc end parallel

Transformed code

1 !$acc parallel private(array1_k_m1)
2 DO j3 = ki3sc+1, ki3ec
3 IF (j3 == ki3sc+1) THEN
4 array1_k_m1 = array1(j1,j3-1)
5 END IF

30

6 var3 = array1_k_m1
7 array1_k_m1 = x * y * z
8 array1(j1,ki3sc) = array1_k_m1
9 var1 = x * y - array1_k_m1

10 var2 = z * array1_k_m1
11 END DO
12 !$acc end parallel

A.3 loop-interchange 2

Example with 3 levels of loop.

Original code

1 !$claw loop-interchange (k,i,j)
2 DO i=1, iend ! loop at depth 0
3 DO j=1, jend ! loop at depth 1
4 DO k=1, kend ! loop at depth 2
5 ! loop body here
6 END DO
7 END DO
8 END DO

Transformed code

1 ! CLAW transformation (loop-interchange (k,i,j))
2 DO k=1, kend ! loop at depth 2
3 DO i=1, iend ! loop at depth 0
4 DO j=1, jend ! loop at depth 1
5 ! loop body here
6 END DO
7 END DO
8 END DO

A.4 loop-interchange 3

Example with OpenACC directives.

Original code

1 !$acc parallel
2 !$acc loop gang
3 !$claw loop-interchange
4 DO i=1, iend
5 !$acc loop vector

31

6 DO k=1, kend
7 ! loop body here
8 END DO
9 END DO

10 !$acc end parallel

Transformed code

1 ! CLAW transformation (loop-interchange i < -- > k)
2 !$acc parallel
3 !$acc loop gang
4 DO k=1, kend
5 !$acc loop vector
6 DO i=1, iend
7 ! loop body here
8 END DO
9 END DO

10 !$acc end parallel

A.5 loop-fusion 2

Example using the group clause.

Original code

1 DO k=1, iend
2 !$claw loop-fusion group(g1)
3 DO i=1, iend
4 ! loop #1 body here
5 END DO
6
7 !$claw loop-fusion group(g1)
8 DO i=1, iend
9 ! loop #2 body here

10 END DO
11
12 !$claw loop-fusion group(g2)
13 DO i=1, jend
14 ! loop #3 body here
15 END DO
16
17 !$claw loop-fusion group(g2)
18 DO i=1, jend
19 ! loop #4 body here
20 END DO
21 END DO

32

Transformed code

1 DO k=1, iend
2 ! CLAW transformation (loop-fusion group g1)
3 DO i=1, iend
4 ! loop #1 body here
5 ! loop #2 body here
6 END DO
7
8 ! CLAW tranformation (loop-fusion group g2)
9 DO i=1, jend

10 ! loop #3 body here
11 ! loop #4 body here
12 END DO
13 END DO

A.6 loop-fusion 3

Example showing behavior with other directives (OpenACC).

Original code

1 !$acc parallel
2 !$acc loop gang
3 DO k=1, iend
4 !$acc loop seq
5 !$claw loop-fusion
6 DO i=1, iend
7 ! loop #1 body here
8 END DO
9

10 !$acc loop vector
11 !$claw loop-fusion
12 DO i=1, iend
13 ! loop #2 body here
14 END DO
15 END DO
16 !$acc end parallel

Transformed code

1 !$acc parallel
2 !$acc loop gang
3 DO k=1, iend
4 ! CLAW transformation (loop-fusion same block group)
5 !$acc loop seq
6 DO i=1, iend
7 ! loop #1 body here

33

8 ! loop #2 body here
9 END DO

10 END DO
11 !$acc end parallel

A.7 loop-fusion 4

Example using the collapse clause.

Original code

1 DO k=1, iend
2 !$claw loop-fusion collapse(2)
3 DO i=0, iend
4 DO j=0, jend
5 ! nested loop #1 body here
6 END FO
7 END DO
8
9 !$claw loop-fusion collapse(2)

10 DO i=0, iend
11 DO j=0, jend
12 ! loop #2 body here
13 END DO
14 END DO
15 END DO

Transformed code

1 DO k=1, iend
2 ! CLAW transformation (loop-fusion collapse(2))
3 DO i=0, iend
4 DO j=0, jend
5 ! nested loop #1 body here
6 ! nested loop #2 body here
7 END DO
8 END DO
9 END DO

A.8 loop-extract 2

Example with fusion clause.

Original code

34

1 PROGRAM main
2 !$claw loop-extract(i=istart,iend) map(value1,value2:i) fusion group(g1)
3 CALL xyz(value1, value2)
4
5 !$claw loop-fusion group(g1)
6 DO i = istart, iend
7 ! some computation here
8 print*,’Inside loop’, i
9 END DO

10 END PROGRAM main
11
12 SUBROUTINE xyz(value1, value2)
13 REAL, INTENT (IN) :: value2(x:y), value2(x:y)
14
15 DO i = istart, iend
16 ! some computation with value1(i) and value2(i) here
17 END DO
18 END SUBROUTINE xyz

Transformed code

1 PROGRAM main
2 !CLAW extracted loop
3 DO i = istart, iend
4 CALL xyz_claw(value1(i), value2(i))
5 ! some computation here
6 print*,’Inside loop’, i
7 END DO
8 END PROGRAM main
9

10 SUBROUTINE xyz(value1, value2)
11 REAL, INTENT (IN) :: value2(x:y), value2(x:y)
12
13 DO i = istart, iend
14 ! some computation with value1(i) and value2(i) here
15 END DO
16 END SUBROUTINE xyz
17
18 !CLAW extracted loop new subroutine
19 SUBROUTINE xyz_claw(value1, value2)
20 REAL, INTENT (IN) :: value1, value2
21 ! some computation with value1 and value2 here
22 END SUBROUTINE xyz_claw

A.9 loop-extract 3

Example with more complicated mapping.

35

Original code

1 PROGRAM main
2 !$claw loop-extract(i=istart,iend) map(value1,value2:i/j)
3 CALL xyz(value1, value2)
4 END PROGRAM main
5
6 SUBROUTINE xyz(value1, value2, j)
7 INTGER, INTENT(IN) :: j
8 REAL , INTENT(IN) :: value2(x:y), value2(x:y)
9

10 DO i = istart, iend
11 ! some computation with value1(j) and value2(j) here
12 END DO
13 END SUBROUTINE xyz

Transformed code

1 PROGRAM main
2 !CLAW extracted loop
3 DO i = istart, iend
4 CALL xyz_claw(value1(i), value2(i))
5 END DO
6 END PROGRAM main
7
8 SUBROUTINE xyz(value1, value2, j)
9 INTGER, INTENT(IN) :: j

10 REAL , INTENT(IN) :: value2(x:y), value2(x:y)
11
12 DO i = istart, iend
13 ! some computation with value1(j) and value2(j) here
14 END DO
15 END SUBROUTINE xyz
16
17 !CLAW extracted loop new subroutine
18 SUBROUTINE xyz_claw(value1, value2, j)
19 INTGER, INTENT(IN) :: j
20 REAL, INTENT (IN) :: value1, value2
21 ! some computation with value1 and value2 here
22 END SUBROUTINE xyz_claw

A.10 array-transform 2

Example with induction and acc clauses

Original code

1 SUBROUTINE vector_add

36

2 INTEGER :: i = 10
3 INTEGER, DIMENSION(0:9) :: vec1
4
5 !$acc parallel
6 !$claw array-transform induction(myinduc) acc(loop)
7 vec1(0:i) = vec1(0:i) + 10;
8
9 !$claw array-transform acc(loop)

10 vec1(0:i) = vec1(0:i) + 1;
11 !$acc end parallel
12 END SUBROUTINE vector_add

Transformed code

1 SUBROUTINE vector_add
2 INTEGER :: claw_i
3 INTEGER :: myinduc
4 INTEGER :: i = 10
5 INTEGER, DIMENSION(0:9) :: vec1
6
7 !$acc parallel
8
9 ! CLAW transformation array notation vec1(0:i) to do loop

10 !$acc loop
11 DO myinduc = 0, i
12 vec1(myinduc) = vec1(myinduc) + 10;
13 END DO
14
15 ! CLAW transformation array notation vec1(0:i) to do loop
16 !$acc loop
17 DO claw_i = 0, i
18 vec1(claw_i) = vec1(claw_i) + 1;
19 END DO
20
21 !$acc end parallel
22 END SUBROUTINE vector_add

A.11 array-transform 3

Example with fusion clause

Original code

1 SUBROUTINE vector_add
2 INTEGER :: i = 10
3 INTEGER, DIMENSION(0:9) :: vec1
4 INTEGER, DIMENSION(0:9) :: vec2
5

37

6 !$claw array-transform induction(claw_i) fusion
7 vec1(0:i) = vec1(0:i) + 10;
8
9 !$claw array-transform induction(claw_i) fusion

10 vec2(0:i) = vec2(0:i) + 1;
11 END SUBROUTINE vector_add

Transformed code

1 SUBROUTINE vector_add
2 INTEGER :: claw_i
3 INTEGER :: i = 10
4 INTEGER, DIMENSION(0:9) :: vec1
5 INTEGER, DIMENSION(0:9) :: vec2
6
7 ! CLAW transformation array notation vec1(0:i) to do loop
8 ! CLAW transformation array notation vec2(0:i) to do loop
9 ! CLAW transformation fusion

10 DO claw_i=0, i
11 vec1(claw_i) = vec1(claw_i) + 10;
12 vec2(claw_i) = vec2(claw_i) + 1;
13 END DO
14 END SUBROUTINE vector_add

A.12 array-transform 4

Example with 2-dimensional arrays

Original code

1 SUBROUTINE vector_add
2 INTEGER :: i = 10
3 INTEGER, DIMENSION(0:10,0:10) :: vec1
4 INTEGER, DIMENSION(0:10,0:10) :: vec2
5
6 vec1(0:i,0:i) = 0;
7 vec2(0:i,0:i) = 100;
8
9 !$claw array-transform

10 vec1(0:i,0:i) = vec2(0:i,0:i) + 10
11 END SUBROUTINE vector_add

Transformed code

1 SUBROUTINE vector_add
2 INTEGER :: i = 10
3 INTEGER, DIMENSION(0:10,0:10) :: vec1

38

4 INTEGER, DIMENSION(0:10,0:10) :: vec2
5
6 vec1(0:i,0:i) = 0;
7 vec2(0:i,0:i) = 100;
8
9 DO claw_i = 0, i, 1

10 DO claw_j = 0, i, 1
11 vec1(claw_i,claw_j) = vec2(claw_i, claw_j) + 10
12 END DO
13 END DO
14 END SUBROUTINE vector_add

A.13 remove 2

Original code

1 DO k=1, kend
2 DO i=1, iend
3 ! loop #1 body here
4 END DO
5
6 !$claw remove
7 PRINT*, k
8 PRINT*, k+1
9 !$claw end remove

10
11 DO i=1, iend
12 ! loop #2 body here
13 END DO
14 END DO

Transformed code

1 DO k=1, kend
2 DO i=1, iend
3 ! loop #1 body here
4 END DO
5
6 DO i=1, iend
7 ! loop #2 body here
8 END DO
9 END DO

39

	General information about the CLAW language
	Line continuation
	Interpretation order of the CLAW directives
	Accelerator compile guard

	CLAW high-level directives
	Single Column Abstraction (SCA)
	SCA directive in ELEMENTAL function
	Automatic Data Movement Managment
	SCA model configuration

	CLAW low-level directives
	Global clauses
	Target clause

	Loop transformation
	Loop interchange/reordering
	Loop jamming/fusion
	Loop extraction
	Loop hoisting
	Conditional extraction from loop
	Loop fission/splitting

	Specific transformation
	K caching (column caching)
	On-the-fly computation (array access to function call)

	Accelerator abstraction/helper transformation
	Conditional primitive directives
	Vector notation expansion

	Utility transformation
	Remove
	Ignore
	Verbatim

	Code examples
	kcache 2
	kcache 3
	loop-interchange 2
	loop-interchange 3
	loop-fusion 2
	loop-fusion 3
	loop-fusion 4
	loop-extract 2
	loop-extract 3
	array-transform 2
	array-transform 3
	array-transform 4
	remove 2

